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A B S T R A C T   

Accurate estimation of evapotranspiration (ET) and the partitioning of ET into transpiration (Tr), soil evaporation 
(Es) and interception (Ei) is critical to understand water cycle and land-atmosphere feedback. In this study, we 
evaluated the performances of two remote sensing-based ET models at multiple scales, and analyzed the un-
certainties in ET partitioning due to the model structures. These two models were Simple Terrestrial Hydrosphere 
Model (SiTH) developed by our team and the Global Land Evaporation Amsterdam Model (GLEAM). As far as ET 
were concerned, the two models exhibited relatively good performances at different scales. However, it was 
found that GLEAM performed relatively poor at evergreen broadleaf forest (R2 = 0.34; RMSE = 0.87 mm day− 1; 
NSE = − 0.28). In addition, the seasonal pattern of simulated ET by GLEAM at the tropical rainforest was not 
consistent with the observations. Furthermore, great discrepancies in ET partitioning were observed between the 
two models. Generally, GLEAM tended to underestimate Es (slope = 0.02; R2 

= 0.004), and overestimate Tr 
(slope = 1.51; R2 = 0.78) compared to the observations. The underestimations of Es by GLEAM may partly be due 
to the ignorance of soil evaporation under vegetation canopy. On the contrary, SiTH displayed relatively good 
performances in estimations of Es (slope = 0.76; R2 

= 0.62) and Tr (slope = 0.98; R2 
= 0.51). However, both of 

the two models failed to properly simulate Ei, although GLEAM (slope = 0.55; R2 = 0.83) performed slightly 
better than SiTH (slope = 0.40; R2 = 0.95). Global multi-year average ratios of Tr, Es, and Ei to ET for GLEAM and 
SiTH were 0.76, 0.09, 0.15 and 0.67, 0.25, 0.08 respectively. In future studies, it is important to investigate direct 
observations on different components of ET, especially on the interception, to improve our understanding on the 
ET processes.   

1. Introduction 

As a key part of global water cycle, evapotranspiration (ET) is a 
critical nexus between terrestrial water, carbon and surface energy ex-
changes (Oki and Kanae, 2006; Trenberth et al., 2009; Vinukollu et al., 
2011a; Wang and Dickinson, 2012; Kool et al., 2014). In general, ET is 
mainly consisted of three components: plant transpiration (Tr), soil 
evaporation (Es), and canopy interception (Ei). Among them, Tr is a bi-
otic process regulated by plant stomatal activities (Granier et al., 1999; 
Kool et al., 2014; Kumar et al., 2018; Han et al., 2018), while Ei and Es 
are physical processes that directly convert the water from liquid to 
vapour by energy (Scott et al., 2006; Kool et al., 2014; Wang et al., 

2014). Therefore, accurate estimations of the total ET and its compo-
nents are important for us to understand the land-atmosphere in-
teractions, water and energy balances, and agricultural water demands 
(Newman et al., 2006; Lawrence et al., 2007; Wang and Dickinson, 
2012; Kool et al., 2014; Talsma et al., 2018). 

At present, the ET and its components can be measured in situ by 
using different techniques, such as eddy covariance systems, stable 
isotope, sap flow, and micro-lysimeters (Talsma et al., 2018; Berg and 
Sheffield, 2019). However, large-scale direct observations of the ET 
components are still not available. With the rapid developments in 
remote sensing over the recent four decades, numerous ET models have 
been developed to estimate regional or global ET and its different 
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components (Norman et al., 1995; Cleugh et al., 2007; Mu et al., 2007, 
2011; Leuning et al., 2008; Zhang et al., 2010; Fisher et al., 2008; 
Miralles et al., 2011; Zhang et al., 2016; Zhu et al., 2019). However, 
many of the remote sensing-based models lack a proper representation 
of the effects of soil moisture status on ET, and the performance of those 
models suffers when applied to water-limited areas (Purdy et al., 2018; 
Chen et al., 2020). For example, the Priestly-Taylor Jet Propulsion 
Laboratory (PT-JPL; Fisher et al., 2008) model and the MODIS Global 
Evapotranspiration Project (MOD16; Mu et al., 2011) model use the 
atmospheric moisture conditions (i.e. air temperature, relative humidity 
and vapour pressure deficit) to represent the soil moisture constraints on 
ET. Exceptionally, the Global Land Evaporation Amsterdam Model 
(GLEAM; Miralles et al., 2011) and Simple Terrestrial Hydrosphere 
Model (SiTH; Zhu et al., 2019) directly describe the soil moisture dy-
namics with reliance on the water balance equations, and explicitly 
represent the control of soil water availability on ET processes. Thus, 
they are physically sound and rigorous, and performed relatively good 
across different ecosystem types and environments (Purdy et al., 2018; 
Brust et al., 2021). 

Despite their relatively sound representations of associated hydro-
logical processes, there are still some insufficiencies in systematic inter- 
comparisons and evaluations of their performances. First, the parti-
tioning of ET into its different components exhibited large divergences 
among the different models (Wang-Erlandsson et al., 2014; Miralles 
et al., 2016; Talsma et al., 2018; Berg and Sheffield, 2019). At present, 
most previous studies mainly focus on evaluating the performance of the 
models in simulating the total ET (Vinukollu et al., 2011b; Ershadi et al., 
2014; Miralles et al., 2016), while researches on systematically 
comparing the performance of the different models in ET partitioning 
across different biomes are still few or no-existed. Second, the remote 
sensing-based models use different bio-physiological stress functions to 
tune down the potential ET to actual ET (Fisher et al., 2008; Mu et al., 
2007; Miralles et al., 2011; Zhu et al., 2019). Hence, their performance 
in partitioning ET are expected to differ over various land surface types 
and conditions. However, there are lack of systematic assessments on the 
uncertainties in ET partitioning due to the model structures. Therefore, a 
basis from which to choose a proper parameterization for the different 
ET processes remains missing. Finally, there are still great uncertainties 
in ET partitioning across different sites and biomes, and the seasonal 
variability of the model performances remains unclear. 

To further improve the estimations of ET and its components, we 
compared and analyzed these two model’s performances over a wide 
range of locations and biomes. Specifically, the goals of this study were 
to (i) evaluate the performance of the models in simulating total ET and 
its components with the filed observations, (ii) analyze the spatial 
pattern similarities and differences of estimated ET and its components 
by these two models, and (iii) find out the uncertainties in total ET and 
its components due to model structure. 

2. Methods and data 

2.1. ET models 

In GLEAM and SiTH models, the potential ET is calculated using the 
Priestley-Taylor (PT) equation (Priestley and Taylor, 1972), then is 
tuned down to actual ET based on the stress factors such as soil moisture 
states and vegetation physiological characteristics. The details of the 
two models were given below. 

2.1.1. GLEAM model 
GLEAM is a simple and widely used remote sensing-based ET model. 

The total ET (mm day− 1) mainly includes the transpiration (Tr, mm 
day− 1) from short (e.g. grass) and tall canopy vegetation (e.g. trees), soil 
evaporation (Es, mm day− 1) from bare soil and interception (Ei, mm 
day− 1) from tall vegetation (Miralles et al., 2011). In GLEAM, each grid 
contains three land covers of short vegetation, tall vegetation, and bare 

soil. The total ET of the grid is the sum of the actual evaporation from 
each of the three surface types weighted by their fractional coverage. 
The interception is calculated separately using the Gash model (Gash, 
1979; Valente et al., 1997). Es and Tr are calculated using a series of 
stress factors to constrain the PT potential evapotranspiration, express-
ing as the following equations: 

Es = rsSsαs
Δ

λ(Δ + γ)
(Rs

n − Gs) (1)  

Tr = rscSscαsc
Δ

λ(Δ + γ)
(Rsc

n − Gsc)+ rtcStcαtc
Δ

λ(Δ + γ)
(Rtc

n − Gtc) − βEi (2)  

where the Δ is the slope of the saturated vapour pressure curve (kPa 
℃− 1); λ is the latent heat of vaporization (MJ kg− 1), and represents the 
energy required to change a unit mass of water from liquid to water 
vapour in a constant pressure and temperature process; γ is the psy-
chrometric constant (0.066 kPa ℃− 1), which is the ratio of specific heat 
of moist air at constant pressure to latent heat of vaporization of water; 
rs, rsc and rtc are the fractions of bare soil, short vegetation, and tall 
vegetation in each pixel, respectively; α is the PT coefficient (Priestley 
and Taylor, 1972) and is set respectively to 1.26, 1.26 and 0.80 for bare 
soil (αs), short vegetation (αsc) and tall vegetation (αtc) in GLEAM; Rs

n,Rtc
n 

andRsc
n (W m− 2) are the net radiation intercepted by bare soil, short 

vegetation and tall vegetation, respectively; Gs, Gsc, and Gtc (W m− 2) are 
the soil heat flux for the fraction of bare soil, short vegetation, and tall 
vegetation, respectively, being as fractions of net radiation in GLEAM; 
and β is the interception constant (0.07), which is used to avoid the 
double counting of evaporation from wet canopy (Gash and Stewart, 
1977). 

In GLEAM, the stress factors are parameterized separately for tall 
canopies (Stc), short vegetation (Ssc), and bare soil (Ss), which are the 
function of the soil moisture and the vegetation water content (i.e. 
vegetation optical depth (unitless), VOD). The stress factors for the tall 
vegetation and short vegetation are calculated as: 

Stcor Ssc =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
VOD

VODmax

√ (

1 −

(
θc − θ(w)

θc − θwp

)2)

(3)  

where VODmax is the maximum VOD for a specific pixel; θc (m3 m− 3) is 
the critical soil moisture below which plants start to endure water stress; 
θ(w) (m3 m− 3) is the soil moisture content of the wettest layer; and θwp is 
soil moisture at permanent wilting point (m3 m− 3). In addition, the 
stress factor for bare soil (Ss) is calculated based on surface soil water 
states: 

Ss = 1 −
θc − θ(1)

θc − θr
(4)  

where θr is the residual soil moisture (m3 m− 3); and θ(1) is the surface soil 
moisture (m3 m− 3). 

2.1.2. SiTH model 
Following the scheme of the groundwater-soil-plant-atmosphere 

continuum, SiTH model proposed by Zhu et al. (2019) is a relatively 
new satellite-based ET model at daily temporal resolution. In SiTH 
model, the total ET is the sum of vegetation transpiration, soil evapo-
ration and canopy interception evaporation. The source of water for soil 
evaporation is constrained to occur in the first soil layer, while its for 
plant transpiration comes from both two soil layers and groundwater. 
For the interception loss, rainfalls intercepted by the canopy are evap-
orated at the potential rate. These can be described as: 

Ei = fWET × α Δ
Δ + γ

Rnc

λ
(5)  
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Es = fSM × α Δ
Δ + γ

(Rns − G)

λ
(6)  

Tr,g = (1 − fWET ) × fT ×
∑n

i=1
Tp g,i (7)  

Ts,i = (1 − fWET ) × fSM,i × fT × Tp s,i (8)  

Tr = Ts,i + Tr,g (9)  

where i is the soil layer (i = 1, 2); The α is set to 1.26 in SiTH; Rnc and Rns 
(W m− 2) are the net radiation distributed into the canopy and surface 
soil, respectively; Tp_s,i and Tp_g,i (mm day− 1) are respectively the po-
tential transpiration from soil water and groundwater in the ith layer, 
which are calculated using the PT potential ET by taking the vertical 
distributions of plant roots and the position of groundwater table into 
accounts (see details in Zhu et al., 2019); Ts,i and Tr,g (mm day− 1) are the 
actual transpiration from the soil of the ith layer and groundwater, 
respectively; fWET is the relative surface wetness (unitless), which is 
fraction of day-time consumed by wet canopy evaporation; fT is the plant 
temperature constraint (unitless); fSM,i is the soil moisture constraint 
(unitless) of the ith soil layer. These constraint functions are calculated 
as below: 

fWET = min{χ Sc

Tp
, 1} (10)  

fT = exp

[

−

(
Ta − Topt

Topt

)2
]

(11)  

fSM,i =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 θi⩽θwp,i

1 −

(
θc,i − θi

θc,i − θwp,i

)2

θwp,i < θi < θc,i

1 θi ≥ θc,i

(12)  

where χ is fractional interception occurring during day-time (0.7); Sc 
(mm day− 1) is the capacity of canopy to store water, defined as a 
function of biome, incoming rainfall, and leaf area index; Ta (℃) is the 
air temperature; Topt (℃) is the optimum temperature for canopy tran-
spiration, which is the air temperature value when the multiply of leaf 
area index, net radiation and air temperature reaches the maximum in a 
year; θc,i (m3 m− 3) is the critical soil moisture for soil layer i; and θwp,i 
(m3 m− 3) is soil moisture at permanent wilting point for the ith soil layer. 

2.2. Analysis methods 

Five statistical measures are used to represent the model perfor-
mance, including the slope of the regression line (slope), the coefficient 
of determination (R2), root-mean-square error (RMSE), the relative error 
(RE) and the Nash-Sutcliffe efficiency coefficient (NSE). Generally, the 
R2 value of linear regression between simulations and observations 
greater than 0.5 is considered as acceptable performance. The RMSE 
shows the magnitude and variance in error between observed and 
simulated values, ranging from 0 to +∞. The RE is defined as the ratio of 
RMSE to the mean values of observed data. The NSE is a normalized 
statistic that determines the relative magnitude of the residual variance 
compared to the measured data variance. When the NSE values is closer 
to 1, the simulation is better. The RMSE, RE and NSE were computed as: 

Fig. 1. Flux sites used in the study. Land cover is derived from the MODIS-based MCD12C1 product.  
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RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

t=1
[O(t) − S(t)]2

√

(13)  

RE =
RMSE

O
(14)  

NSE = 1 −

∑n

t=1
[O(t) − S(t)]2

∑n

t=1
[O(t) − O]2

(15)  

wheren n is the total number of observations; O(t) is the observed ET at 
time t, S(t) is the simulated ET, and O is the mean of observed values. 

2.3. Data 

2.3.1. Model forcing data 
The inputs variables of the SiTH include leaf area index (LAI), net 

radiation (Rn), air temperature (Ta), precipitation (PRE), air pressure 
(Pa), and land cover (LC). Here, we used input datasets for LAI from 
GLOBMAP LAI for 1982 to 2017 (Liu et al., 2012). The GLOBMAP LAI is 
generated in 8 km and 16-day/8-day resolution, produced by using 

Table 1 
The information of 46 flux sites used for model validation. More details can be found at https://fluxnet.fluxdata.org.  

No. Site Lat. Lon. year_start year_end Elevation (m) MAP (mm year− 1) MAT (℃) Reference 

ENF   
1 US-Me3  44.31 − 121.61 2004 2009 1005 719  7.07 Vickers et al. (2009) 
2 US-Me6  44.32 − 121.61 2010 2014 998 494  7.59 Ruehr et al. (2012) 
3 CA-Obs  53.99 − 105.12 1997 2010 628.94 405.60  0.79 Brooks et al. (1997) 
4 FI-Hyy  61.85 24.29 2000 2014 181 709  3.80 Suni et al. (2003) 
5 CH-Dav  46.82 9.86 1997 2014 1639 1062  2.80 Zielis et al. (2014)  

EBF 
6 AU-Cum  –33.62 150.72 2012 2014 – –  – Beringer et al. (2016) 
7 AU-Tum  − 35.66 148.15 2001 2014 1200 1159.01  10.72 Leuning et al. (2005) 
8 CN-Din  23.17 112.54 2003 2005 – 1618.10  19.64 Yu et al. (2006) 
9 FR-Pue  43.74 3.60 2000 2014 270 883  13.50 Rambal et al. (2004) 
10 AU-Wom  − 37.42 144.09 2010 2014 705 –  – Beringer et al. (2016) 
11 BR-Sa1  − 2.86 − 54.96 2002 2004 88 2548.17  26.13 Saleska et al. (2003)  

DBF 
12 FR-Fon  48.48 2.78 2005 2014 103 720  10.20 Delpierre et al. (2016) 
13 IT-Col  41.85 13.59 1996 2014 1560 1180  6.30 Valentini et al. (1996) 
14 US-Oho  41.55 − 83.84 2004 2013 230 849  10.10 Noormets et al. (2008) 
15 US-UMB  45.56 − 84.71 2000 2014 234 803  5.83 Rothstein et al. (2000) 
16 US-UMd  45.56 − 84.70 2007 2014 239 803  5.83 Hardiman et al. (2011) 
17 ZM-Mon  − 15.44 23.25 2000 2009 1053 945  25.00 Merbold et al. (2009) 
18 CN-Qia  26.74 115.06 2003 2005 – 1466.75  18.95 Yu et al. (2006) 
MF   
19 BE-Bra  51.31 4.52 1996 2014 16 750  9.80 Carrara et al. (2004) 
20 BE-Vie  50.30 6.00 1996 2014 493 1062  7.80 Aubinet et al. (2001) 
21 CA-Gro  48.22 − 82.16 2003 2014 340 831  1.30 McCaughey et al. (2006) 
22 CN-Cha  42.40 128.10 2003 2005 – 663.59  2.16 Guan et al. (2006) 
23 US-Syv  46.24 − 89.35 2001 2014 540 826  3.81 Desai et al. (2005)  

GRA 
24 US-AR1  36.43 − 99.42 2009 2012 611 –  – Baldocchi and Penuelas (2018) 
25 US-SRG  31.79 − 110.83 2008 2014 1291 420  17.00 Scott et al. (2015) 
26 AT-Neu  47.12 11.32 2002 2012 970 852  6.50 Wohlfahrt et al. (2008) 
27 AU-DaP  − 14.06 131.32 2007 2013 – 983.78  27.25 Beringer et al. (2011) 
28 IT-MBo  46.01 11.05 2003 2013 1550 1214  5.10 Marcolla et al. (2011) 
29 CH-Fru  47.12 8.54 2005 2014 982 1651  7.20 Imer et al. (2013) 
30 US-Var  38.41 − 120.95 2000 2014 129 559  15.8 Ma et al. (2007)  

CRO 
31 BE-Lon  50.55 4.75 2004 2014 167 800  10.00 Moureaux et al. (2006) 
32 DE-Geb  51.10 10.91 2001 2014 161.51 470  8.50 Anthoni et al. (2004) 
33 DE-Kli  50.89 13.52 2004 2014 478 842  7.60 Prescher et al. (2010) 
34 FR-Gri  48.84 1.95 2004 2014 125 650  12.00 Loubet et al. (2011) 
35 US-ARM  36.61 − 97.49 2003 2012 314 843  14.76 Raz-Yaseef et al. (2015) 
36 US-Ne1  41.17 − 96.48 2001 2013 361 790.37  10.07 Suyker et al. (2004)  

SAV 
37 AU-Das  − 14.16 131.39 2008 2014 – 975.82  27.22 Hutley et al. (2011) 
38 AU-Dry  − 15.26 132.37 2008 2014 – –  – Cernusak et al. (2011) 
39 ZA-Kru  − 25.02 31.50 2000 2013 359 547  21.90 Archibald et al. (2009)  

WSA 
40 AU-Gin  − 31.38 115.71 2011 2014 – –  – Beringer et al. (2016) 
41 AU-How  − 12.49 131.15 2001 2014 – 1449.35  27.01 Beringer et al. (2007) 
42 AU-RDF  − 14.56 132.48 2011 2013 – –  – Bristow et al. (2016)  

SHR 
43 CA-NS7  56.64 − 99.95 2002 2005 297 483.27  − 3.52 Wang et al. (2003) 
44 US-Whs  31.74 − 110.05 2007 2014 1370 320  17.60 Scott et al. (2015) 
45 US-KS2  28.61 − 80.67 2003 2006 3 1294  21.66 Hymus et al. (2003) 
46 RU-Vrk  67.05 62.94 2008 2008 100 501  − 5.60 Thomas et al. (2016) 

*MAP is the mean annual precipitation (mm year− 1); MAT is the mean annual temperature (℃). 
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Table 2 
List of field studies used to validate ET partitioning. Locations, characteristics, observational method and duration in situ observations of ET and its components are 
compiled from the literature.  

Lat. Lon. PFT MAP MAT Method Period of Measurements ET Tr Es Ei Reference 

− 4.69 12.08 EBF 1188 24.9 Iobs 1996.11.1–1997.4.30    47 Nizinski et al. 
(2011) 1997.11.1–1998.4.30    140.50 

1998.11.1–1999.4.30    148.90 
23.17 112.50 EBF 1678 20.9 EC, sap flow 2010.7–2011.6 836.60 503.30   Liu et al. (2015) 
9.58 − 83.73 EBF   Iobs 1999.9–2000.8    611 Hölscher et al. 

(2004) 
− 2.95 − 57.95 EBF  EC 1983.9–12 425    Shuttleworth 

(1988) 1984.1–12 1393    
1985.1–9 930    

45.82 − 121.95 ENF  Iobs 1999.4.8–11.8    102.70 Link et al. (2004) 
2000.3.30–12.3    155 

− 43.20 170.30 ENF 3400 11.30 EC, sap flow 2001.11–2002.3  83.60   Barbour et al. 
(2005) 

46.23 − 89.33 DBF 896 3.80 EC, sap flow 2002(160–261)  161.16   Tang et al. (2006) 
2003(152–264)  176.28   
growing season mean 261    

38.66 − 120.63 Forest 1270  EC, sap flow 2000(153–359) 496.58 266.81   Kurpius et al. 
(2003) 

48.67 7.08 Forest 820 9.20 Sap flow, vapour fluxes 1996.5.2–10.27 338 256   Granier et al. 
(2000) 1997.5.2–10.27 357 253   

35.97 − 79.08 Forest 1145 15.50 EC 2001 610    Stoy et al. (2006) 
2001.4–9 490    
2002 580    
2002.4–9 480    
2003 640    
2003.4–9 510    
2004 640    
2004.4–9 500    

36.12 140.10 Forest 1207 14.10 Sap flow 1984.9–1985.8  344   Iida et al. (2006) 
2001.8–2002.7  420   

31.30 35.03 Forest 285  EC, sap flow, micro- 
lysimeters 

2003.10–2004.9 235 134 99  Raz-Yaseef et al. 
(2012) 2004.10–2005.9 343 156 112  

2005.10–2006.9 227 111 93  
2006.10–2007.9 263 115 106  

50.03 6 Forest   EC, sap flow, Iobs 2010(171–274)    46 Soubie et al. (2016) 
2011(120–279)    49 
2010(184–266) 149.40    
2011(166–277) 190.40    
2010(141–275); 2011 
(127–281)  

377   

60.30 17.29 MF 527 5.50 EC, sap flow, Iobs 1995.5.16–10.31 339 243  74 Grelle et al. (1997) 
35.95 − 84.28 MF 1333 14.4 EC, Soil water budget 1998 547  86  Wilson et al. (2001) 

1998 605  91  
31.91 − 110.84 OSH 345 20 Sap flow 2008(200–285)  54.70 31.91  Cavanaugh et al. 

(2011) 
31.74 − 110.05 OSH 340 17 Sap flow 2008(205–274)  44.50 31.74  Cavanaugh et al. 

(2011) 
31.7 − 110.10 OSH 322  Sap flow 2003(185–315)  121   Scott et al. (2006) 
36.92 − 116.55 OSH   LI-1600 1988.4–11  40   Smith et al. (1995) 
40.67 − 104.75 GRA 320 15.60 Stable isotopes 2000.5–10  210.45   Ferretti et al. (2003) 

2001.5–10  272   
42.97 122.35 GRA 474  EC, Iobs 2011.5–9 260.50   18.60 Song et al. (2018) 

2012.5–9 372.70   21.80 
34.33 108.07 CRO 521 12.90 Sap flow, micro- 

lysimeters 
2014.10.18–2015.8.18  258.10 82.90  Ma et al. (2020) 
2015.10.09–2016.8.25  217.20 88.60  

34.30 108.40 CRO 560 12.90 Sap flow, Micro- 
lysimeters 

2015.6.15–2015.9.30  155.49 74.90  Zheng et al. (2021) 
2016.6.12–2016.10.4  126.28 81.11  
2017.6.14–2017.10.6  168.29 81.86  

39.62 116.43 CRO 540 12.10 Stable isotopes 2013.10.9–2014.6.8 270.10 224.40   Ma and Song (2019) 
2014.10.11–2015.6.8 315.40 252.70   

35.27 107.67 CRO 584  sap flow, Micro- 
lysimeters 

2012.5–9  131.50 177.50  Wang and Wang 
(2017) 2013.5–9  135 176.70  

2014.5–9  124 167.40  
–32.32 117.87 CRO 361  EC 2006.3–2007.2 349    Mitchell et al. 

(2009) 
21.08 109.90 CRO  EC, sap flow, Iobs, Micro- 

lysimeters 
1999.9.12–2000.9.24 825.60 513.20 183.20 129.20 Zhou et al. (2004) 

20.90 109.87 1999.9.12–2000.9.24 1141.20 585.90 466.90 88.40 
− 28.55 − 66.82 CRO   Sap flow, Micro- 

lysimeters 
2006.8  7.13 24.90  Rousseaux et al. 

(2009) 2006.11  60 18.91  

* The EC is the eddy covariance systems. The Iobs represents that interception is measured by the difference between gross rainfall and the sum of throughfall and 
stemflow. 
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Advanced Very High Resolution Radiometer (AVHRR) and Moderate 
Resolution Imaging Spectroradiometer (MODIS) satellite data, and it can 
be accessed from http://www.globalmapping.org/. Similar to GLEAM, 
we also selected the latest ERA-5 datasets as the forcing data (Hersbach 
and Dee, 2016). This datasets span from 1982 to 2017 at a 0.25℃ spatial 
resolution and an hour temporal resolution, and are produced by Eu-
ropean Centre for Medium-Range Weather Forecast (ECMWF) 
(https://cds.climate.copernicus.eu/). In addition, the static land cover 
data from MCD12C1 in 2001 was used as one of inputs (Friedl et al., 
2010), because its changes were relatively small at a global scale over 
time (Zhang et al., 2016). 

Because the input datasets vary in spatial resolution, we resampled 
them to a common 0.25◦ spatial resolution before using them as the 
forcing values. In addition, we performed temporal interpolation for LAI 
data set based on the nearest interpolation method to obtain daily data 
for the pixels. 

2.3.2. Validation data 
For site-scale comparisons, we selected a total of 46 flux sites from 

the FLUXNET database (https://fluxnet.fluxdata.org) to evaluate the 
performances of two models in ET simulations. For the purpose of 
validation, each flux site meets the following criteria: (1) more than one 
years of daily data available (not gap fill eddy covariance data). (2) 
mostly homogeneous land cover at 1 km radius from the flux tower 
(checked with Google Earth), and the land cover at sites location 

matches with its in MCD12C1. (3) daily energy balance closure ranging 
from 0.70 to 0.95 (Supplementary Fig. S1). These 46 sites can be divided 
into 9 different vegetation types: evergreen needleleaf forests (ENF, 5 
sites), evergreen broadleaf forests (EBF, 6 sites), deciduous broadleaf 
forests (DBF, 7 sites), mixed forests (MF, 5 sites), grasslands (GRA, 7 
sites), croplands (CRO, 6 sites), savannas (SAV, 3 sites), wooden sa-
vannas (WSA, 3 sites), and shrublands (SHR, 4 sites). The map of all sites 
location and detailed information of all sites are shown in Fig. 1 and 
Table 1, respectively. In addition, filed observations of the different 
components of ET (transpiration, soil evaporation and interception) 
were collected from published literatures (see details in Table 2). 
Noticeably, only one or two components of ET were directed measured 
at most sites, and the others were calculated by models using observed 
meteorological data or water balance methods. Here, only the direct 
measurements of the ET components were used for model performance 
comparisons. 

For regional-scale comparison, the water balanced-ET datasets (WB- 
ET) for 32 major (i.e. >200,000 km2) catchments produced by Pan et al. 
(2012) were used to evaluate the model performance at catchment 
scales. This datasets were widely used to evaluate model performance at 
regional scale (Li et al., 2013; Wang et al., 2015), which include monthly 
precipitation, ET, streamflow, and the change in water storage from 
1984 to 2006. The detailed information of 32 catchments were given in 
Supplementary Table S1 (Chen et al., 2020). In addition, the Model tree 
ensembles (MTE) product (Jung et al., 2009), which spans from 
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Fig. 2. Comparison between ET estimation of two models and tower measurements for the 46 sites scale across 9 biomes. Boxplots show the (a) slope, (b) R2, (c) 
RMSE, (d) RE and (e) NSE statistical significance of simulated ET. The bottom and top of boxes mark the 25th and 75th percentiles, respectively. The central solid line 
of each box shows the median values. 
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1982− 2011 at monthly temporal and 0.5◦ spatial resolutions, was used 
for to evaluate the model performances at tropical rainforest. The MTE 
product is generated by using the machine-learning algorithm based on 
the ET observations from the FLUXNET data and remote sensing and 
meteorological data. All input and validation datasets are summarized in 
Supplementary Table S2. 

3. Results 

3.1. Performances of two models in total ET simulations at multiple scales 

The five selected statistical measures (Slope, R2, RMSE, RE and NSE) 
are used to evaluate the performance of two models at the 46 selected 
sites (Fig. 2) and 32 catchments (Fig. 3). At site scale, the average slopes 
between the simulated and observed ET ranged from 0.75 (GRA) to 1.05 
(MF) for SiTH and from 0.69 (GRA) to 1.12 (ENF) for GLEAM, respec-
tively. The SiTH and GLEAM displayed a similar range of mean RMSE 
values across all biomes (SiTH: RMSE = 0.59–0.90 mm day− 1; GLEAM: 
RMSE = 0.64–0.93 mm day− 1). The average values of RE ranged from 
0.30 (SHR) to 0.66 (ENF) for SiTH and from 0.34 (SHR) to 0.75 (MF) for 
GLEAM. In addition, the average values of R2 ranged from 0.46 (WSA) to 
0.77 (MF) for SiTH and from 0.34 (EBF) to 0.70 (SHR) for GLEAM. The 
SiTH produced slightly higher mean R2 values than that for GLEAM at 
most biomes, except for the SAV and WSA. Noticeably, relatively low R2 

value for GLEAM were found at EBF sites from 0.004 to 0.51, indicating 
a poor consistency between the simulated and observed ET at these sites. 
Finally, the average NSE values for SiTH were greater than 0 over all 
biomes (0.08–0.65), which shows a greater consistency with the 
observed ET. However, the mean NSE values produced by GLEAM were 

lower than 0 over some biomes, especially at EBF biome (NSE = − 0.23). 
At regional scale (Fig. 3), the slopes of regression between simulated 

ET by the two models and the estimated WB-ET were close to 1 at most 
basins. Nevertheless, its slope values were obviously higher than 1 at 
some catchments (i.e. Changjiang, Huang, Niger, Nile, and Yukon) and 
lower than 0.5 at Amazon and Congo basins. The R2 values for both 
models were higher than 0.6, except for some basins in tropic areas with 
R2 values less than 0.35 (i.e. Amazon, Congo and Mekong basins). 
Generally, the SiTH produced a slightly higher R2 values than that of 
GLEAM at all basins. In addition, the values of RMSE for SiTH were 
lower than that for GLEAM in most basins with the exceptions of Congo, 
Mekong, Zhujiang, Changjiang, Indus and Nile. The RE values for SiTH 
were slightly lower than that of GLEAM, which ranged from 0.10 
(Amazon) to 1.80 (Yukong) for SiTH and from 0.10 (Amazon) to 2.04 
(Indigirk) for GLEAM. The NSE values for SiTH were slightly greater 
than that for GLEAM at most basins, and two models generated NSE 
values greater than 0 except for the basins in tropicals, Yukon, and 
Indigirk. 

3.2. The seasonal variations of ET in two models at different scales 

We further analyzed the seasonal variations of ET from the two 
models at 46 sites. Generally, it was found that the seasonal patterns of 
ET were well captured by the two models at all sites (the selected 24 sites 
shown in Supplementary Fig. S2). However, at BR-Sa1 site, the seasonal 
variations of ET estimations by GLEAM showed difference with that of 
observations (Fig. 4). In addition to BR-Sa1 site, we also selected the BR- 
Sa3 site (3.02◦S, 54.97◦W) from FLUXNET data, and K34 site (2.60◦S, 
60.20◦W) in the literature of Da Rocha et al. (2009) to further analyze 

Fig. 3. Comparison of ET estimation of two models versus the water balanced-ET (WB-ET) at regional scale across 32 catchments. Figure shows the (a) slope, (b) R2, 
(c) RMSE, (d) RE and (e) NSE statistical significance of simulated ET. 
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the seasonal patterns of ET in tropical rainforest. The data at BR-Sa3 site 
in 2002 and 2004 and K34 from 1999 to 2006 were collected in this 
study. The mean annual precipitation over these sites were large (2701 
mm year− 1 for BR-Sa1, 1569 mm year− 1 for BR-Sa3, and 2286 mm 
year− 1 for K34). Interestingly, the observed ET at three sites in the dry 
seasons were higher than that in wet seasons. The seasonal variations of 
observed ET at three sites were consistent with that of net radiation and 
temperature, but contrary to that of precipitation (Fig. 4). We found that 
the seasonal patterns of simulated ET by SiTH were generally consistent 
with that of the observed ET at the three sites. On the contrary, the 
seasonal patterns of simulated ET by GLEAM at these sites were different 
from that of observations with high values in wet seasons and low values 
in dry seasons. In addition, we also compared the different components 
of ET from two models at these sites (Fig. 4). It was found that during the 
wet seasons the interception loss and transpiration simulated by GLEAM 
were obviously higher than that simulated by SiTH. During dry seasons, 
the performances of the two models were comparable in the partitioning 
of ET at these sites. 

In addition, long-term monthly average ET from 1984 to 2006 in 
SiTH and GLEAM versus the estimated WB-ET at 32 catchments were 
shown in Fig. 5. The seasonal patterns of estimated ET by SiTH and 
GLEAM were basically consistent with that of WB-ET at most of basins, 
with high values in local summer and low values in local winter. How-
ever, the simulated monthly average ET by the two models showed poor 
agreement with the estimated WB-ET over the basins in tropical regions 
(i.e. Amazon, Congo, and Mekong basins). In addition, the estimated ET 
by SiTH and GLEAM were slightly higher than the monthly average WB- 
ET at some basins, especially in Nile, Indigirk, and Yukon basins. 

3.3. Performances of two models in the partitioning of ET at multiple 
scales 

The estimated ET and its components by the two models against the 

filed measurements at each site were shown in Fig. 6. Generally, the 
performances of the two models in simulating total ET were similar. The 
slope of linear regression between observed and simulated ET was 0.99 
and 1.05 for SiTH and GLEAM, respectively. The values of R2 were 
relatively high for the two models, being 0.84 and 0.80 for SiTH and 
GLEAM, respectively (Fig. 6d). However, the performances of the two 
models exhibited great differences in ET partitioning. The slopes of 
linear regression between observed and simulated transpiration were 
0.98 and 1.51 for SiTH and GLEAM, respectively, suggesting that 
GLEAM tended to overestimate transpiration. Nevertheless, GLEAM 
produced a higher values of R2 for transpiration than SiTH (SiTH: R2 =

0.51; GLEAM: R2 = 0.78) (Fig. 6c). Additionally, the soil evaporation 
was significantly underestimated by GLEAM, with low values of the 
linear regression slope (0.02) and R2 (0.004). On the contrary, the SiTH 
performed relatively well in simulating soil evaporation (slope = 0.76 
and R2 = 0.62) (Fig. 6a). For interception, we found that the two models 
tended to underestimate it with the values of regression slopes lower 
than 1 (0.40 and 0.55 for SiTH and GLEAM, respectively), despite with 
relatively high R2 (0.95 and 0.83 for SiTH and GLEAM, respectively) 
(Fig. 6b). 

The spatial patterns of mean annual ET and its different components 
estimated by SiTH and GLEAM were shown in Fig. 7, and the fractions of 
transpiration, soil evaporation, and interception in total ET of the two 
models were shown in Fig. 8. The transpiration was the dominant 
component, accounting for 0.67 and 0.76 of total ET for SiTH and 
GLEAM, respectively. The estimated transpiration by GLEAM was 
generally higher than that by SiTH, and thus the ratios of transpiration 
to ET (that is, Tr/ET) of GLEAM were apparently higher than that of SiTH 
at most regions, especially in low vegetation cover regions (i.e. shrub-
lands and grasslands). Generally, low Es values were estimated by these 
two models over dense vegetation areas, and high Es values over biomes 
with low vegetation covers. However, the simulated soil evaporation 
and the ratio of soil evaporation to ET (that is, Es/ET) by SiTH (0.25) 
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Fig. 4. The seasonal patterns of ET, precipitation (PRE), net radiation (Rn), air temperature (Ta) , and estimated ET components at three tropical rainforest sites. The 
top panels represent the seasonal distribution of ET and PRE, Rn and Ta at BR-Sa1, BR-Sa3 and K34 sites, respectively. The bottom panels show the difference of mean 
per-month transpiration and interception between GLEAM and SiTH at BR-Sa1, BR-Sa3 and K34 sites, respectively. 
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were significantly higher than that estimated by GLEAM (0.09). Finally, 
the ratios of interception to ET (that is, Ei/ET) by GLEAM (0.15) was 
slightly higher than that by SiTH (0.08), although the two models 
exhibited a consistent spatial distribution. 

We also compared the performance of those two models in parti-
tioning ET across different biomes (Table 3). The average Tr/ET ratios 
across different biomes estimated by GLEAM exhibited a relatively 
narrow range, varying from 0.60 (ENF) to 0.85 (CRO). On the contrary, 
the Tr/ET ratios estimated by SiTH showed large variations across 
different vegetation types, ranging from 0.32 (OSH) to 0.80 (WSA). 
Generally, the Tr/ET ratios estimated by GLEAM were clearly higher 
than that by SiTH over the SHR, GRA and CRO biomes (0.64–0.85 for 
GLEAM, and 0.32–0.64 for SiTH). The Es/ET ratios estimated by GLEAM 
were lower than that estimated by SiTH across all biomes (0.01–0.30 for 
GLEAM, and 0.04–0.67 for SiTH). Noticeably, it is expected that the Es/ 
ET ratios over biomes with low vegetation covers should be high. 
However, the estimated Es/ET ratios over these biomes by GLEAM were 
relatively low (0.12–0.30), and the estimated Es/ET ratios by SiTH 
seemed to in reasonable ranges (0.48–0.67). The estimated Ei/ET ratios 
for two models were high in forests, especially at tropical rainforest, and 
low in non-forest regions. Nevertheless, the estimated Ei/ET ratios by 
GLEAM were slightly higher than SiTH across all biomes, ranging from 
0.03 to 0.29 for GLEAM and from 0.01 to 0.21 for SiTH, respectively. 

4. Discussion 

4.1. The global land ET anomalies in El Niño and La Niña events 

It has been well documented that the ET over tropical rainforest was 
mainly determined by the energy rather than precipitation (Nemani 
et al., 2003; Jung et al., 2010; Zhang et al., 2016; Baker et al., 2021). 
Thus, increased radiation in dry seasons can produce greater ET than in 
wet seasons (Fig. 4). However, the seasonal variations in ET estimated 
by GLEAM were quite different from the observations. Thus, it seems 
that GLEAM can not properly capture the dynamics of ET in response to 
climate perturbations across the tropics. To verify our hypothesis, we 
analyzed inter-annual variability of ET (Fig. 9) and meteorological 
variables (Fig. 10) during typical El Niño (i.e. 1987, 1992, 1994 and 
2002) and La Niña years (i.e. 1999, 2000, 2010, and 2011). The spatial 
patterns of ET estimated by GLEAM across tropics were significantly 
different from that estimated by SiTH and MTE product. During El Niño 
years, negative ET anomalies were found by GLEAM across the tropics, 
while positive anomalies were observed by SiTH and MTE. During La 
Niña years, the results were contrary to the above (Fig. 9). In addition, 
the spatial patterns of ET anomalies by SiTH and MTE are basically 
consistent with that of net radiation anomalies, while these by GLEAM 
displayed an agreement with that of precipitation in El Niño and La Niña 
years (Figs. 9 and 10). Recently, Purdy et al. (2018) also found increases 

Fig. 5. Comparison of seasonal patterns of simulated ET of two models versus the water balanced-ET (WB-ET) at regional scale across 32 catchments.  
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in ET across the tropics during El Niño years by using an updated PT-JPL 
ET algorithm. Yan et al. (2013) noticed that positive ET anomalies in El 
Niño years and negative ET anomalies in La Niña years were occurred in 
tropics, and its spatial distribution was also consistent with potential ET, 
contrary to that of precipitation. Moreover, Guan et al. (2015) found 
that when annual rainfall was greater than 2000 mm year− 1, the tropical 
rainforest can utilize the water storage from the wet season to satisfy the 
plant water demand. Thus, these two models exhibited contrasting be-
haviors and further exploration into the controlling mechanisms of ET 
are still needed across these regions. 

4.2. The uncertainty of model structure in ET partitioning 

Generally, the daily variations of estimated ET by the two models 
showed a good consistency with the observations. Thus, these two 
models performed well in response to the changes in environmental 
factors (Supplementary Fig. S3). However, they exhibited great differ-
ences in ET partitioning due to differences in model structure and 
parameterization. The estimated soil evaporation by GLEAM was 
significantly lower than observations with relatively low regression 
slope and R2. On the contrary, SiTH performed relatively well in simu-
lations of soil evaporation with regression slope close to 1 and relatively 
high R2 (Fig. 4). In the two models, soil evaporation was constrained to 
occur only in the upper soil layer, and was tuned down to actual values 
by using similar stress functions (Eqs. (4 and 12) for GLEAM and SiTH, 
respectively). The main differences between them may be due to the 

spatial grid representation of the ET processes. In the GLEAM model, soil 
evaporation under the tall and short canopy was ignored, and only takes 
the portion of bare soil in each grid into account (Eqs.1 and 2). For the 
vegetation with low leaf area index, the soil evaporation under the 
vegetation canopy often contributed a significant portion of total ET 
(Black and Kelliher, 1989; Baldocchi and Meyers, 1991; Barbour et al., 
2005; Unsworth et al., 2004). Thus, the underestimation of soil evapo-
ration from GLEAM may occur in vegetated regions, especially over 
biomes with low vegetation covers (i.e. shrublands and grasslands). 

Both models used soil water content as one of the stress factor to limit 
the potential transpiration. As the source of water for transpiration 
mainly comes from the soil, incorporating soil water content into the 
algorithms of transpiration can improve the model performances (Fed-
erer et al., 2003; Maurer et al.,2002; De Jeu et al., 2008; Purdy et al., 
2018; Brust et al., 2021). However, these two models adopted different 
stress factors to reflect the vegetation state, such as plant temperature 
(Eq. (11)) for SiTH and vegetation optical depth (Eq. (3)) for GLEAM. 
However, the stress factor using temperature (fT; Eq. (11)) by SiTH may 
not well capture the actual vegetation state during the whole growing 
stages. On the contrary, VOD can reflect the plant water status as well as 
photosynthetic activity, and thus provides a dynamic information on 
vegetation state (Woodhouse, 2005; Liu et al., 2013; De Jeu et al., 2008; 
Miralles et al., 2011). Therefore, GLEAM can better capture the dynamic 
features of transpiration than SiTH (Fig. 6). In addition, in regions with 
sufficient water supply, ET was mainly determined by the atmospheric 
moisture demand (i.e. net radiation and vapour pressure deficit, which 
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Fig. 6. Comparison between the estimated ET and its components of two models and field observations. Figure shows the linear regression between the modeled 
estimations and observed estimations for (a) soil evaporation, (b) interception, (c) transpiration, and (d) evapotranspiration, respectively. 
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are often closely related with temperature) (Jung et al., 2010). Thus, the 
poor performances of GLEAM in energy-limited regions, such as tropical 
rainforest, may be due to the absence of stress factors of atmospheric 
moisture demand (which usually highly correlated with temperature). 
For SiTH, the overestimated ET in these regions may be due to the un-
considered influences of vegetation states on ET (Eq. (11)). Therefore, 
the stresses on transpiration should take the available soil moisture, 
vegetation state, and atmospheric moisture demand into accounts. 

Interception loss is the process of the rainfall intercepted and stored 
by canopy, and subsequently lost by evaporation from the canopy. Thus, 
interception loss is strongly correlates with the amount of precipitation 
and canopy state (Pypker et al., 2005; Zheng and Jia, 2020). Although 
the estimated Ei by the two models showed a high correlation with field 
observations, these two models clearly underestimated interception loss, 
especially the SiTH model. Generally, GLEAM provided a slightly better 
estimates of Ei than SiTH. Up to date, filed observations of interception 
have been widely conducted. However, these were mainly concentrated 
on forest ecosystems, with few observations in sparse vegetation (Mir-
alles et al., 2010; Zheng and Jia, 2020). Therefore, the specific source of 
uncertainty of two models in interception estimates was still unknown, 
and more filed observations are needed to understand mechanism of 
interception loss over sparse vegetation. 

4.3. Partitioning of ET into three components 

Recently, researches on the Tr/ET ratio had attracted much atten-
tions. For examples, Jasechko et al. (2013) reported that the transpira-
tion accounted about 0.80–0.90 of ET based on isotope analysis across 
the global large basins. Taking the uncertainties of the isotopic data into 
accounts, Coenders-Gerrits et al. (2014) reported that the Tr/ET ratio 
ranged from 0.35 to 0.80. Good et al. (2015) estimated the ratios of Tr/ 
ET being 0.64 ± 0.13 based on atmospheric vapour isotope measure-
ments and isotope mass budget. By compiling 81 filed observations, 
Schlesinger and Jasechko (2104) reported that the ratio of Tr/ET was 
about 0.61 ± 0.15. The results from land surface models had shown that 
the ratio of Tr/ET was only 0.43, and was argued to be underestimated 
(Lawrence et al., 2007, 2011; Wang-Erlandsson et al., 2014; Berg and 
Sheffield, 2019). Using the observations to constrain the land surface 
models, Lian et al. (2018) increased the estimated Tr/ET ratios from 
0.41 ± 0.11 to 0.62 ± 0.0 6. Recently, a global mean ratio of Tr/ET was 
estimated to be 0.57 ± 0.07 based on 108 ensemble members from the 
combination of models and LAI-observed regression (Wei et al., 2017). 
In addition, many remote sensing-based models (PML and PT-JPL) 
estimated that the ratios of Tr/ET ranged from 0.54 to 0.65 (Purdy 
et al., 2018; Zhang et al., 2016). These indicated that the estimated Tr/ 
ET ratio by SiTH (0.67) was closer to reported values than that estimated 

Fig. 7. Annual mean values over 1982–2017 of (a, b) ET and ET components: (c, d) transpiration, (e, f) soil evaporation, and (g, h) interception. The left and right 
panels show the estimated ET and its components in SiTH and GLEAM, respectively. 
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by GLEAM (0.76). The overestimation of Tr/ET ratio for GLEAM mainly 
occurred in GRA (0.79), CRO (0.85), and CSH (0.78), compared with the 
mean Tr/ET values being around 0.51 ± 0.15 across these biome in 
previous studies (Lauenroth and Bradford, 2006; Alton et al., 2009; 
Schlesinger and Jasechko, 2104; Wang-Erlandsson et al., 2014; Zhou 
et al., 2016; Gu et al., 2018; Sun et al., 2019; Xu, et al., 2021). 

At global, the Es/ET ratio in SiTH (0.25) was greater than GLEAM 
(0.09), and the Ei/ET ratio in SiTH (0.08) was lower than GLEAM (0.15). 
At present, the model-based global mean Es/ET ratios were estimated to 
range from 0.24 to 0.52 (Miralles et al., 2016; Purdy et al., 2018; Dir-
meyer et al., 2005; Berg and Sheffield, 2019). These results may indicate 
that GLEAM tended to underestimate the ratios of Es/ET. Over low 
vegetation regions, relative low Es/ET ratios were estimated by GLEAM 
(i.e. 0.14 for GRA and 0.12 for CSH). However, direct observations 
showed that soil evaporation may account 0.50 of total ET compared 
over these regions (Wang-Erlandsson et al., 2014; Zhou et al., 2016). For 

canopy interception, the global mean Ei/ET ratios were generally esti-
mated ranging from 0.10 to 0.24 (Dirmeyer et al., 2005; Zhang et al., 
2016; Miralles et al., 2016). These results indicate that SiTH slightly 
underestimated the Es/ET ratio. However, the exact ratios of soil evap-
oration and canopy interception to ET at global scale are still lack. 

5. Conclusion 

Using remote sensing ET models for GLEAM and SiTH based on the 
Priestley-Taylor equation, this study systematically evaluated ET parti-
tioning and the uncertainty of ET partitioning in the model structure. In 
general, both two models in ET simulations performed well at different 
scales, except the poor performance of GLEAM occurring in tropical 
rainforest. Lack of the stress of atmospheric moisture demand on tran-
spiration in GLEAM, lead to the overestimation of ET in wet seasons at 
tropical rainforest. As for the ET partitioning, the overestimated 

Fig. 8. Annual mean values over 1982–2017 of ratios of (a, b) transpiration, (c, d) soil evaporation, and (e, f) interception to total ET. The left and right panels show 
the ET partitioning in GLEAM and SiTH, respectively. 

Table 3 
Comparison of ET partitioning in two models across different biome.  

Vegetation Tr/ET  Es/ET  Ei/ET 

GLEAM SiTH  GLEAM SiTH  GLEAM SiTH 

ENF  0.60  0.65   0.04  0.15   0.29  0.21 
EBF  0.72  0.76   0.01  0.04   0.24  0.20 
DNF  0.72  0.70   0.09  0.17   0.17  0.12 
DBF  0.78  0.76   0.02  0.17   0.18  0.07 
MF  0.68  0.76   0.04  0.14   0.24  0.10 
CSH  0.78  0.47   0.12  0.52   0.04  0.01 
OSH  0.64  0.32   0.30  0.67   0.03  0.01 
WSA  0.76  0.80   0.03  0.15   0.16  0.05 
SAV  0.84  0.73   0.03  0.24   0.09  0.03 
GRA  0.79  0.51   0.14  0.48   0.03  0.01 
CRO  0.85  0.64   0.07  0.35   0.04  0.02  
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transpiration and slightly underestimated interception were occurred in 
GLEAM, and modeled soil evaporation showed poor performance with 
the filed observations. Comparing with the observations, the SiTH per-
formed relatively well in simulating soil evaporation, and under-
estimated interception. The modeled transpiration in SiTH provided a 
lower correlation with observations than GLEAM, owing to plant tem-
perature limitation cannot reflect actual vegetation state. In addition, 
the Tr/ET ratio in GLEAM was 0.76 with values higher than that of SiTH 

(0.67) and previous studies (central mean value around 0.60), and the 
Es/ET values in GLEAM (0.09) was clearly lower than SiTH (0.25) and 
other modeled values. Due to neglecting the soil evaporation under short 
and tall vegetation, results in the clearly overestimated Tr/ET ratio and 
underestimated Es/ET in GLEAM occurred over low vegetation covers, 
with Tr/ET and Es/ET values ranging from 0.64 to 0.85 and from 0.07 to 
0.30, respectively. The modeled Ei/ET ratio in SiTH (0.08) was slightly 
lower than GLEAM (0.15). 

Fig. 9. Spatial patterns of ET annual anomalies in (a, b) GLEAM, (c, d) SiTH and (e, f) MTE at tropical rainforest during El Niño and La Niña events. The left and right 
panels show the ET annual anomalies during El Niño and La Niña years, respectively. 

Fig. 10. Spatial patterns of annual anomalies for (a, b) net radiation, (c, d) air temperature and (e, f) precipitation at tropical rainforest during El Niño and La Niña 
events. The left and right panels show the annual anomalies during El Niño and La Niña years, respectively. 
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The different scheme of parameterization of evaporation stress fac-
tors results in the different performance of models at ET partitioning. In 
this study, we figure out the source of uncertainties of two models in ET 
partitioning, therefore, improvements of ET partitioning, still needs 
more field observations to understand its mechanism and optimize the 
parameters and structure. 
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